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Abstract

Most previous work in analytic generalization of plans dealt with totally or-

dcred plans. These methods cannot be directly applied to generalizing partially

ordered plans, since they do not capture all interactions among plan operators
for all total orders of such plans. In this paper we introduce a new method

for generalizing partially ordered plans. This method is based on providing EBG

with explanations which systematically capture the interactions among plan op-

erators for all the total orders of a partially-ordered plan. The explanations are
based on the Modal Truth Criterion, which states the necessary and sufficient

conditions for ensuring the truth of a proposition at any point in a plan (for a

class of partially ordered plans). The generalizations obtained by this method

guarantee successful and interaction-free execution of any total order of the
generalized plan. In addition, the systematic derivation of the generalization

algorithms from the Modal Truth Criterion obviates the need for carrying out

a separate formal proof of correctness of the EBC algorithms.

This paper appears in The Proceedings of the Ninth National Conference on

Artificial Intelligence (AAAI-91), held in Anaheim, CA, on July 14-19, 1991.
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Abstract

Most previous work in analytic generalization of plans
dealt with totally ordered plans. These methods can-
not be directly applied to generafizing partially ordered
plans, since they do not capture all interactions among
plan operators for all total orders of such plans. In this
paper we introduce a new method for generalizing par-
tially ordered plans. This method is based on providing
EBC with explanations which systematically capture the
interactions among plan operators for all the total orders
of a partially-ordered plan. The explanations are based
on the Modal Truth Criterion [2], which states the nec-
essary and sufficient conditions for ensuring the truth
of a proposition at any point in a plan (for a class of
partially ordered plans). The generalizations obtained
by this method guarantee successful and interaction-free
execution of any total order of the generalized plan. In
addition, the systematic derivation of the generalization
algorithms from the Modal Truth Criterion obviates the
need for carrying out a separate formal proof of correct-
ness of the EBG algorithms.

1 Introduction

Creating and using generalized plans is a central problem
in machine learning and planning. This paper addresses
the problem of generafizing a class of plans known as
partially ordered plans that have been extensively inves-
tigated in the planning literature [16] [17] [18] [2]. A par-
tially ordered plan corresponds to a set of total orderings,
called completions, each corresponding to a topological
sort of the plan. A partially ordered plan is considered
correct if and only if each of its completions will be able
to achieve the desired goals (that is, the plan should be
executable in any total order consistent with the partial
ordering, without any subgoal interactions).

The problem of generalizing a plan has traditionally
been characterized as that of computing the weakest
(most general) initial conditions of a sequence of opera-
tors. The computed conditions are required to describe
exactly the set of initial states such that the generalized

plan applicable in those states is guaranteed to achieve
a state matching the goals.

"Kambhampati was partially supported by the Of-
fice of Naval Research under contract N00016-88-K-0620.
The authors' ernail addresses are rao@c_.stan]ord.edu and
kedar@ptolemy.arc.nasa.gov.
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Puton(x,y)
P: clea r(x),clea rfo'),on(x,Table)
A: on(x,y)
D: clear(y),on(x,Table)

t I

clear(A)
clear(B) _,_ t I : puton(A,B)L t G

on(A,Table) / ' ....... ' "__'-(on(A,B)

clear(D) _ t 2::put°n(c_D) p"
on(C,Table) /: .................... /

Figure I: Four Block Stacking Problem (4BSP)

Goal regression [15], explanation-based generalization
(EBG) [12] [4] [14], and macro-operator formation [5],
are some previous analytic solutions to the plan general-
ization problem. These methods were developed for to-
tally ordered plans. They typically compute the weakest
conditions of such plans by regressing variablized goals
back through the plan operator sequence to ensure ap-
propriate producer-consumerdependencies among effects
and preconditions in the generalized plan, and to prevent
deletions of needed iiterals.

These methods cannot be directly applied to gener-
alizing partially ordered plans, since they do not cap-
ture all interactions among plan operators for all total
orders of such plans. To illustrate this limitation, con-
sider the simple blocks world problem for stacking four
blocks (4BsP) and a partially ordered plan for solving
it, shown in Figure 1. Given an initial state where
four blocks A, B, C, D are on the table and clear,

the goal On(A, B)A On(C, D) can be achieved by the
partially ordered plan corresponding to two total or-
ders, or completions, Puton(A, B) --. PuIon(C, D), and
Puton(C, D) -- Puton(A, B) (where the operator tern.
plate Puton(z, y) is specified as shown in the figure).
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clear(p) j__dear(q)

on(p,Table) _ _- tA :-put°n(p'q------_) 1 °n(p'q)

dear(r) __o._r_)
dear(s)
on(r,Table) '_ "_" _t _ : puton(r,s)
q=r,q_s
p_r

Figure 2: An incorrect generalization of 48sP

For this problem, the generalization algorithms dis-
cussed above produce a generalized plan such a.s tile one
shown in Figure 2. Ilowever, if we would like to guaran-
tee that any total order of this partial order will succeed,
the generalized conditions are incorrect. The reason is
that the plan was generalized guided by one specific to-
tal order, so constraints for other total orders were not
accounted for. For example, if the problem were to stack
three blocks A, t3 and C on top of each other, this gen-
eralized plan would be applicable, and yet fail for one of
the two total orders (as it includes an incorrect comple-
tion Puton(A, B) ---, Puton(B, C)). What is missing is
the constraint that s be not the same as p (whereas both
are codesignating with B in this case).

To avoid this problem, the ZBO algorithm needs to
be more systematic in accounting for all possible inter-
actions among operators corresponding to all possible
total orders consistent with the partial ordering. There
are two options for doing this. One is to modify the al.
gorilhm: For instance, repeatedly compute weakest con-
ditions of all total orders of the partial order and then
conjoin them in some way. Another option is to modify
the input: Provide a full explanation of correctness of
the instantiated partially ordered plan, and use that ex-
planation to produce the correct generalized initial con-
ditions for the generalized partially ordered plan.

In this paper, we describe a technique for solving this
problem by the latter approach, viz., by modifying the

input to generalization algorithm (in particular, to EBO).
By modifying the input to EBG, rather than the v.Bo al-
gorithm, we retain tile broad applicability of the algo-
rithm (for different classes of plans, different generaliza-
tions can be produced). In addition, a partially plan can
correspond to an exponential number of totally ordered
completions, while weakest conditions are more directly
related to the causal structure of tile plan. Thus, com-
puting tile weakest conditions on each total order sepa-
rately (and conjoining them to get the correct general-
ization of tile plan) would involve an exponential amount

of redundant computation [2]. By computing and using
the explanation of correctness of the partially ordered
plan directly, we can avoid this redundant computation.

Our approach is to provide v.Bo with explanations of
correctness of partially ordered plans based on the Modal

total orders of the generalized plan. In addition, the sys-
tematic derivation of the generalization algorithms from
the Modal Truth Criterion obviates the need for carry-
ing out a separate formal proof of correctness of the gag
algorithms. Finally, the methodology can be extended in
a straightforward fashion to handle other types of gener-
alizations of partially ordered plans (such as computing
conditions under which at least some completion of the
plan can possibly execute; see Section 5).

In the rest of the paper, we introduce the notion of
truth criterion and present the explanation of correctness
of a partially ordered plan based on the Modal Truth Cri-
terion. We then describe how these explanations form
the basis for the generalization. We conclude by de-
scribing related work and examining the contributio,ls
of this paper. Tile main focus of this paper is devel-
opment of systematic methods for generalizing partially
ordered plans. The complementary issue of tradeoffs in-
volved in synthesizing and generalizing partially ordered
vs. totally ordered plans is discussed briefly in Section 5.

1.1 Terminology

Given a planning problem [2", 6;] where 2" is a conjunc-
tion of literals specifying the initial state and _7 is a con-
junction of literals specifying the desired goal state, a
partially ordered plan P is a 2-tuple P : (T, O), where
T is the set of actions in the plan, and O is a partial
ordering relation over T. T contains two distinguished
nodes tt and to, where the effects of tt and the precon-
ditions of ta correspond to the initial and final states
of the plan, respectively. The actions are represented
by instantiated STRIPS-type operators with Add. Delete
and Precondition lists, all of which are conjunctions of
first order literals 1. O defines a partial ordering over

T: 0 = {(ti, tj) I ti,tj E T}. We write tl --< t i if ei-
ther (ti,tj) E O, or there exist a sequence of operators
tl...t, E T, such that (ti,tl),(tl,t2)...(t,,tj) E O.
(Thus, the "-<" relation corresponds to the transitive
closure of O.) If ti and tj are unordered with respect to
each other (i.e., ti _ tj and tj ;_ ti), then we say ti IIti

The modal operators -ra,, and "O" are used to de-
note the necessary and possible truth of a statement. In
particular <>(t; -< tj) if and only if ti can possibly pre-
cede t i in some total ordering of the partially ordered
plan (which means that either (t, -.¢ tj) or (t, II t_)).
Finally, we define codesignation and non-codesignation

constraints among literals as follows: If a literal Pi is
constrained to codesignate with another literal pj (writ-
ten as Pi _ pj), then pi and pj must be unifiable.
Similarly, if p; is constrained not to codesignate with
Pi (written as Pi_pj), then pi must not unify with
pj. Codesignation constraints among literals translate
into equalities among variables and constants (domain
objects), while the non-codesignation constraints trans-
late into disequalities among variables. For example,
On(A, B) w. On(x, y) if and only if eq(A, z) A eq(B, y)

Truth Criterion [2], which states the necessary and suffi- (since the most general unifier of the two literals is 0 =
cleat conditions for ensuring the truth of a proposition at ((A x)(B y)). Similarly, On(A, B)_On(x, y) if and only
any point in a plan for a class of partially ordered plans, if ",[eq(A, x) ^ eq(B, y)] (that is neq(A, x) Y neq(B, y)).
These explanations are then used as the basis for gener-

alization. The generalizations obtained by this method aWe shall a.,.e upper case letters for constants and the
guarantee successful and interaction-free execution of all lower case ones for variables.

r



2 Explanation of Correctness using the

Modal Truth Criterion

In I2]. Chapman provided a formal means of reasoning
about partially ordered plans called the Modal Truth
Criterion (MTC). The MTC provides necessary and suffi-
cient conditions for ensuring the truth of a proposition C
before an action t in a partially ordered plan. In this sec-
tion, we shall develop the explanation of correctness of
a partially ordered plan in terms of this truth criterion.
For plans containing STRIPS-type operators whose pre-
condition, add and delete lists contain first order literals,
the MTC can be stated as follows: _

Algorithm EXP-MTC (P: (r,0))
foreach tE T do

foreach (C, t) (where C E precond(t)) do
Traverse 7) in the reverse topological order and

find the first operator t' s.t.
t' -< t A Be e ef fee_s(t') A O(e ,._ C) A
vt"s.t. <>(t' -< t" -< t),

Vd e delete(t") D(d _ C)
if such a t' is found

thenV ,-- VU{(e,t',C,t)}
else return failure

od od

holds(C,t,P) ¢==_
3t' s.t. O(t' -_ t) A e • effects(f) A O(e _ C) A

vt" s.t. <>(t' -< t" -< t)
Vd • delete(t") O(d ¢ C) (1)

It states that a proposition C holds before an opera-
tor t in a partially ordered plan 7) : (T, O) if and only
if there exists an operator t' such that an effect e of t'
necessarily codesignates with C, and for every operator
t" of the plan that may possibly fall between t' and t,
every proposition belonging to the delete list of t" will
necessarily not codesignate with C. The truth criterion
can usefully be thought of as a completeness/soundness

theorem for a version of the situation calculus (cf. [2],
pp. 340). Alternatively, it can be thought of as a method
for doing goal-regression [15] over a class of partially or-
dered plans.

In planning, the intended use of the MTC isas _apre-
scriptionofallpossibleways ofmaking a propositionofa

partiallyordered plan true during plan svnfhesis.How-
ever,the MTC can alsobe used as the formalbasissolely

for proving plan correctness.In particular,a partially

ordered plan P : (T,0) isconsidered correctaccording
to the modal truth criterion,ifand only ifallthe goals
of the plan, as well as allthe preconditionsof the in-

Figure 3: Explanation Construction Algorithm

between t' and t in some total ordering must not violate
the condition C. The semantics of validations therefore

capture both the traditional precondition-effect depen-
dencies and protection violations across all total order-
ings. In particular,

v: {e, t', C, t) is a validation of _o: (T, O) ¢==>
= c) ^ o(t'-<t) A

Vt" • T s.t. O(t' -< t" -< t)
Vd • delete(t"), O(d _ C) (2)

For the 4ssP plan shown in Figure 1, the explanation
of correctness found by this algorithm would consist of
the following validations:

vl : (On(A,Table),tt,On(A,Table),tl)
v_ : (Clear(A), tl, Clear(A), tl)
on: (Clear(B),tx,Clear(B),ti)
v4 : (On(C, Table),h,On(C, Table),t2)
,,s : (Clear(C),t,, CZear(C),t )
vs : (Clear(D),t,,Clear(D),i2)

vi" (On(A,B),tl,On(A,B),tG)
vs : (On(C, D), t_,On(C,D),tu)

dividual plan steps can be shown to hold according to Discussion: The EXP-MTC algorithm shown in Figure 3
the criterion given in equation 1 without extending or
modifying _o in anyway.

The explanation of correctness of a plan can then be
characterized as a _proof' that the plan satisfies this cri-
terion for correctness. The algorithm EXP-MTC shown in
Figure 3 constructs the explanation of correctness given
a partially ordered plan, by interpreting equation 1 for
each precondition and goal of the plan. It returns failure
if the plan turns out to be incorrect according to MTC.

Note that this algorithm represents the computed ex-
planation by a set 1; of dependency links. The individual
dependency links are of the form (e,t',C, t). We shall
refer to these links as validations of the plan [9]. Intu-
itively, these represent the interval of operators t' and t

finds only one out of the possibly many explanations of
correctness of the plan. In particular, for each precon-
dition C of an operator t, there might possibly be many
operators that can contribute C (according to the crite-
ria stated by MTC). Of these, the algorithm records only

the first operator t' encountered in a reverse topological
order scan of T_ that satisfies the conditions of MTC_. It

is perfectly reasonable to choose another explanation of
correctness (i.e., another set of validation links P) over
the one given by this algorithm as long as that explana-
tion also satisfies the MTC. It should however be noted
that the generalization phase will be guided by the par-
ticular explanation that is chosen at this step (rather
than by all possible explanations). This corresponds to

over which a literal C needs to hold. C is made true by a common restriction for EBG termed "generalizing with
the effect e of operator tt, and is needed at L It is pro- respect to the explanation structure", or "following the
tected throughout that interval (t',I) from being clob- example" [12]
bered, that is, any operator t" that may possibly come Complexity: The cost of finding a validation link in the

above algorithm is O(n2(), where ( is an upper bound
UFor ease of exposition, in this paper we will be using a on the number of delete litera]s per operator, and n is

version of Chapman's truth criterion [2] without the white-
knight clause. The development for the more general version aIfno such t' is found, the algorithm returns failure, which
can be carried out in a very similar fashion, and with the means that there exists at least one linearization of 7) that
same complexity bounds [10]. wiLl have subgoal interactions.
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clear(i)
clear(j)
on(i,Table)

clear(k)
clear(I)
on (k,Table)

,q)

,s)

Figure 4: Schematized Plan for ,tBSP

the number of operators in the p]an 4. If _ is the upper
bound on the number of preconditions per operator, then
there must be O(_n) validations links in the explanation.
Thus the total cost of explanation construction is O(n3).

3 Generalization using Explanation

In this section, we will first use the explanation of cor-
rectness developed in the previous section to derive a
declarative specification for the generalization phase of
EBG for partially ordered plans. We will then provide an
algorithm that interprets this specification.

The generalization process consists of schematizing 5
the plan 7_ to produce 79', and determining the weakest
initial conditions under which 79' will be correct accord-

ing to the MTC, with respect to the same explanation
structure as that used to explain the correctness of 79.

Given a plan P : (T, O), we construct its schernatized
version, 79s : (T _, O') by replacing each instantiated op-
erator t E T by the corresponding operator template t'
(with unique variables). (For tt and t_, we repla¢e their
literals by their variablized versions.) O _ defines a paT:
tial ordering on T s that is isomorphic to O. Figure 4
shows the schematized plan corresponding to the 4BsP
plan shown in Figure 1.

The schematization process defines a one-to-one map-
ping between the add, delete and precondition lists of

each step t of 79 and those of the corresponding operator
template t' of 79'. Let LMAP denote this mapping. For
example, the literal On(A, Table) in the preconditions
of operator t: in the 4BsP plan shown in Figure 1 cor-
responds to the literal On(z, Table) in the schematized
plan. Given this mapping, a set of explanation links V'
for 79' can be constructed such that they axe isomorphic

to V of 79. For each validation v : (e, t', C, t") E V, there
will be a validation v J : (e',t", C',t') G W such that
t" and t"' are operator templates in the schematized
plan corresponding to t' and t" respectively, and e s and
C s are the literais corresponding to e and C according
to _MAP defined above. For the 4BSP schematized plan
shown in Figure 4, the explanation links in V' are:

_This assumes that the transitive closure of the partial or-
dering relations among plan steps is available (for an n step
plan, this can be computed in O(n _) time), thereby allowing
the checks on ordering relations during explanation construc-

v_ : (On(i, Table), t't, On(z, Table), t|)
: (Clear(O, t} ,Clear( ) ,t',)

v] (Clear(j), t*t, Clear(y), t_)
v_ : (On(k, Table), t"t, On(z, Table), t[)
v_ : (Clear(k),t't, Clear(z), t_)
v_ : (Clear(l), t't, Clear(w), t_)

t"v_ (O,'(z,y),t'_,O,,(p,q), c)
,,:,: (On(z,,,,), t_, 0.(,', s), tb )

Notice that after the schematization, 79' and V" are over
general in that the links in "1_' may no longer consti-
tute an explanation of correctness of P' according to
the MTC. The objective of the generalization phase is to

post constraints (codesignation and non-codesignation)
on the variable bindings to specialize this over general
schematized plan and validations just enough so that N'
is an explanation of correctness for 79, according to MTC.
Extracted initial conditions on 79' are then the weakest

(most general) conditions for which 79s can be executed
in any total order consistent with the partial order O',
according to the same explanation structure

We now develop the declarative specification of the
necessary and sufficient conditions under which W will
be an explanation of correctness of 79' according to the
MTC. We do this by expressing the conditions under
which each element W E 1)' is a validation of 79_. From

the semantics of the validations provided in equation 2,
these conditions can be stated as the conjunction of
codesignation and non-codesignation constraints shown
in expression 3 in Figure 5. 6

Essentially, the validations offer an "interval" view on
the explanation - the intervals in which literals have to
hold. For our generalization algorithm to mirror stan-
dard EBG algorithms, we regroup the validations to re-
flect what needs to hold for each operator (the "opera-
tor" view). The validations grouped for each operator
t" E T', describe validations it is required to support
and prese_e in the explanation of correctness. The "in-
terval" view in expression 3 can tiros be re-expressed in
an "operator" view by grouping the validations at each
operator, as shown in expression 4 in Figure 5.

Informally, expression 4 states that every operator in
the schematized plan should: (i) necessarily support the
conditions that its counterpart in the specific plan was
required to support according to the explanation and (ii)
necessarily preserve all the conditions that its counter-

part in the specific plan was required to preserve. In
particular, we can define the e-conditions (for relevant
effect conditions) of an operator as the set of validations
it is required to support in the explanation of correctness
(equation 5 in Figure 5), and p-conditions (for preserv-
able conditions) of an operator as the set of validations

it is required to protect (equation 6). Using equations 5
and 6, we can now rewrite expression 4 as expression 7.

Expression 7 is then the declarative specification of
the necessary and sufficient conditions under which the

schematized plan 7_' is correct according to MTC, given
the same explanation structure V'. 79' can be used in
any initial state S that satisfies the conditions shown in

tion to be done in constant time. eSince there is a direct correspondence between _'° and V,
5We shall use the superscript _s" to distinguish entities and O" is isomorphic to O, for each v ° : (e', t",C', t"°) £

corresponding to the schematized plan. V°, we already have t '° -< t"' (see equation 2)

F
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o(r, -<t" -<t"'), ]A C')A yr.eT"s.t.Vd' E delete(t') E](d a # C')
vv':(t' A",C',t") E V"

(3)

v v' : (e', t", C', t'") _ v" s.t. t'" = t', o(C" ,_ e') ^

e- con_,t,ons(t')

Vv' : (e',t",c',t"') _ v" s.t. <>(t'" _t" -<t") Vd" _ delete(t') O(d" _C')
Y

p-condittons(t" )

(4)

e-conditions(t') = {v" I v" : (e',t",C',t"') EV" s.t.t'" =t'}
p - conditions(if) = {v' I v' : <e',t",C',t"'> _ V' _.C <>(t'" -< t" _ t'")}

(5)

(6)

: ,-,o.,,,,o.,<,.>. ]Vv" (e', t",C', e p conditions(t') Vd" 6 delete(t') O(d" # C') (7)

Figure 5: Derivation of the generalization algorithm (see text)

Algorithm EXP-GEN (_' : (T', O'), V')
Initialize: Let _ be a null substitution and 3' be True
foreach t° E T 8 do

foreach v' : (e',t",CO,t '') e e - conditions(is) do
Let fl' be the substitution under which O(e" ._ C °)

.-- 8o8'
foreach v" : (e', t", C', t"°) E p - conditions(t °) do
Let 7' be the condition under which

Vd ° _ delete(t °) D(d' ¢ C')
7 '--TAT '

Substitute/3 into all the literals of P' and Y'

Weakest preconditions -- e f f ects(t_) A T o t_

Figure 6: Generalization Algorithm

expression 7. For such states, the plan is guaranteed to
succeed in all of its total orderings. Furthermore, note
that expression 7 computes exactly those conditions that
are required (by MTC) to make V J an explanation of cor-
rectness of'Ps. In this sense, the computed conditions
are the weakest preconditions (modulo the given expla-
nation) for ps

The algorithm EXP-GEN shown in Figure 6 implements
expression ? procedurally in a straightforward manner.
The algorithm makes one pass through the plan, vis-
iting each operator, computing the codesignation and
non-codesignation constraints imposed on the general-
ized plan. The codesignation constraints are maintained
as substitutions in 8, and the non-codesiguation con-
straints are maintained as disequality constraints on the
variables in 7. At the end of the generalization phase,
the substitution list 8 is applied to all the literals in
the schematized plan T'" and its explanation structure
W. Finally, the equality and disequality constraints im-
posed by /3 and 7 respectively are conjoined with the
initial state specification r of the generalized plan to get
tim weakest preconditions for the generalized plan.

Complexity: The generalization algorithm runs in
polynomial time. In particular, the e-conditions and p-
conditions of all the operators in :PJ, as required by the

rthe literals in the e-conditions of tt, to be precise

algorithm, can be precomputed in O(IT°IIV'I) or o(."-)
time (where n is the number of operators of the plan),
and the propositional unification required to compute ff
and 3" itself can be done in polynomial time.

3.1 Example

Let us now follow the generalization of the schematized
plan for 4BsP by the algorithm ZXP-GEN. Following the
definitions in equations 5 and 6, and the schematized val-
idations in Section 3, the e-conditions and p-conditions
of the operators in the schematized plan can be com-
puted as:

e - eonditions(t_) : v_: (On(z, y), t'_, On(p, q), fie)

e - eonditions(t_) : v_ : (O'n(z,w),t_,On(r, s), t_)

p- conditions(t_): v_ :(On(z,w),t_,On(r, s),t_)

_: (Clear(k), 6, Clear('- ), t_)

_: (Clear(l), tI, Clear(,,,), q)
v_ : (On(k, Table),t}, On(z, Table),t_)

p --eonditions(t_) :v_ :(On(=, y),t#l,On(p, q),tG)_""

vl : (Clear(i), t}, Clear(x),t" 0

v_ : (Clear(j), t}, Clear(y),t_)

vI : (On(i,Table),t}, On(z, Table), tl)

e -- conditions(t}) : v._'_':(Clear(k), t'l, Clear(z), t_)

d: (Clea,(l),tI, Clear(,_),t_)

vi : (On(k,Table), t}, On(z, Table), t_ )

v_ : (Clear( i),t't, Clear(z),t'_)

,4 : (Clear(j), tI , Clear(V), t_)
v_ : (On(i, Table), tI, On(z, Table), t'l )

Recall that e - conditions of an operator t describe
those literals which t supports, and p - conditions are
those literals it is required to preserve (these would
include the preconditions and useful effects of other

operators parallel to t; for example, among the four
p - condition validations of t], the first one corresponds
to preserving the required effect oft_ and the other three
correspond to preserving the preconditions of t_). Note
that by definition, t_r will have no e-conditions or p-
conditions, and t} will only have e-conditions (since no
plan operator can precede tt or follow to).
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Figure 7: Generalized Plan for 4BSP

The EXP-GEN algorithm computes 8_ for t_ :
Puton(z,y) by unifying On(z,y) and On(p,q). Thus
at this point, 8_ (and therefore 8) is ((z p)(y q)). Next,
-r't for t_ : Puton(z,y) is computed by en_uring that its
delete literals on(x, Table)A clear(y) do not unify with
the literals of its p-conditions. Thus 7_ can be computed
as [neq( z, z) V neq(Table, w)] A neq(y, z) ^ neq(y, w).

Similar processing for t_ : Puton(z,w) yields /Y_
as ((z r)(ws)), and _ as [neq(z,z) V neq(Tabie,y)] A
neq(w, z)Aneq(w, y). Finally, the processing for t_ yields
_ as ( (i z)(j y)(k z)(l w) ) (there are no p-conditions for
t_ and so 3/3 is trivially True).

The resultant global substitution 8 is thus 8_ o8_ o19_,
or:

8 = ((i p)(x p)(j q)(y q)(k r)(z r)(! s)(w s))

Similarly the global non-codesignation constraints on
variables 3' is computed by conjoining 7_, _ and 7_ as:

_, = [neq(_, _) V neq(Table, w)] ^ neq(y, _) ^
neq(y, w) ^ [neq(z, z) V neq(Table, y)] A neq(w, z)

Figure 7 shows the generalized plan (computed by sub-
stituting # into the literals of schematized 4BsP plan
shown in Figure 4), and its weakest preconditions, com-

puted by conjoining 7 o 8 with the effects of _ in the
plan. In particular, we have:

"r o 8 = [neq(p, r) V neq(Table, s)] ^ neq(q, r) A
neq(q, s) A [neq(r, p) V neq(Table, q)] ^ neq(s, p)

Notice that the weakest preconditions rightly prohibit
the use of this plan in a situation where the goal is
On(A,B) ^ On(B,C), because they explicitly prohibit
codesignation of q and r, and p and s (see 7 o fl). Thus,
tile algorithm avoids the overgeneralization discussed in
Section 1.

4 Related Work

Our algorithms directly correspond to the EBG expla-
nation and generalization steps, but work on specialized
explanations of correctness tailored to plans, rather than
arbitrary proofs. It is possible to use the standard EBG
algorithm [12] itself for this purpose, by proving (explain-
ing) correctness of a plan directly from first order situa-
tion calculus. The advantage of dealing with specialized
explanations is that they often can be produced much
more efficiently. In part_cuqar_ we have seen that expla-
nations of correctness (validations) based on MTC (which
states soundness/completeness theorem for a version of

situation calculus) can be generated in polynomial timc
(Section 2). In contrast, generating proofs in full situ-
ation calculus is undecidable. In addition, by starti,lg
with a provably sot,nd and complete truth criterion and
deriving the ESG algorithms directly from that, we ob-
viate the need to carry out a separate formal proof of
correctness of the algorithms (e.g. [I]).

There are interesting similarities between our compu-
tation of generalized protection violations, and that per-
formed by other plan generalization methods (although
some plan generalization methods such as [12] and [lq]
omitted this). STR|PS' generalized macro-operators [5]

handle protection violations by unifying delete lists with
the literals in a "lifted," or generalized, trian61e table,
adding non-codesignation constraints. Minton [I 1] spec-
ified protection violations as a meta-level axiom to be

used as part of a proof of correctness of plans by EOG.
Goal regression [15] computes protection violations by
unifying delete lists with regressed conditions. As noted
earlier, none of these deal with partially ordered plans.
In comparison, we provide a systematic way of doing this
analysis for a class of partially ordered plans, with the
help of MTC.

The work reported here is also related the "operator
order generalization" algorithms such as [13] and [3]. Af-
ter generalizing a totally ordered plan using the EGGS
algorithm [14], these algorithms further generalize the

structure of the plan by removing any redundant or-
derings. In contrast, we start with a correct partially
ordered plan (generated by any classical partial-order
planner-such as NONLIN [17]), and compute a general-
ized partially ordered macro-operator which represents
the weakest conditions under which the generalized plan
can be successfully executed. However, the methodol-
ogy that we developed here can be extended to allow
a broader class of generalizations. In fact, by relaxing
the notion of "following the example" (Section 3), we
can systematically develop a spectrum of generalization
algorithms to allow a variety of structural generaliza-
tions (Section 5). In this sense, the methodology pre-
sented here could be used to systematically characterize
the EBG, order generalization and structure generaliza-
tion [13] algorithms as different points on a spectrum
of generalizations (with varying amounts of emphasis on
plan-time vs. generalization-time analysis).

5 Concluding Remarks

This paper addresses the problem of generalizing par-
tinily ordered plans - a class of plans which have been
extensively investigated in the planning literature. We
have developed the formal notion of explanation of cor-
rectness for partially ordered plans based on the MTC,
and used this definition to derive a declarative specifi-
cation for explanation-based generalization of partially
ordered plans. The generalized plans that are produced
by procedurally interpreting this declarative specifica-
tion are guaranteed to execute successfully in any total
order consistent with the partial ordering, in any situ-
ation matching the weakest preconditions computed by
the generalization.

While the development here provided a separate al-
gorithm to compute the explanation of correctness of a

!"



partiallyorderedplan,oftentheexplanationconstruc-
tionphasecanbeintegratedwith thegenerationofthe
plan. In particular,mostpartial-orderplanners(such
asNOSLIN[17],SIPE[18])keeptrackof the _validation
structure"oftheplanbeingdevelopedtoaidinplangen-
eration.Furthermore,in [8,9],wediscussaplanmodifi-
cationframeworkthat utilizesthevalidationstructure-
basedexplanationof correctnessof theplanto guide
incremental plan modification. This opens up the possi-
bility of integrating generalization with modification [6]:
In situations where a generalized plan is only partially
applicable, it can be modified appropriately.

The generalization phase in Section 3 is "conservative"

in that it follows the explanation structure of the given
plan in a very strict sense. It only allows the generalized
plan to have a validation structure that is isomorphic
to the validation structure of the specific plan. It does
not find .alternative validation structures of the plan, or
make any modifications/extensions to the structure of
the plan. However, within the framework developed in
this paper, it is possible to relax the generalization phase
in a variety of ways, giving rise to a spectrum of gen-
eralizations of the given plan. These include allowing
new ordering constraints, or allowing new planning steps
during the generalization phase. This would essentially

involve using the truth criterion as a way of establish-
ing the truth of a proposition (synthesis) [2] rather than
merely as a way of testing for correctness.

The algorithms presented in this paper compute the
weakest conditions under which all topological sorts of
a partially ordered plan can be guaranteed to execute
successfully. Sometimes, it may be useful to compute
weakest conditions under which at least some topologi-
cal sort of the plan can possibly execute. Generalization
algorithms for this case can be developed in a very sim-
ilar fashion. In particular, the truth criterion for guar-
anteeing the possible truth of a proposition is specified
by reversing the modalities in the equation 2 (substitute

"O" for "13" and vice versa) [2]. Using this truth crite-
rion, we can then develop similar polynomial time EBC
algorithms for possible correctness [10].

The truth criterion that we have used in this paper
assumes an operator representation that is free of condi-
tional effects and conditional preconditions. We believe
that similar methodology can also be used for more ex-
pressive operator representations. It must however be
noted that increased expressiveness of the operators ne-
cessitates truth criteria that are correspondingly expen-
sive to interpret, increasing the cost of EBQ.

Finally, an issue that is orthogonal to the problem
of correctly generalizing a given partially ordered plan,
is the utility of generalizing and using partially ordered
plans as compared to totally ordered plans. Some points
in favor of the former include compactness of represen-
tation, and a greater flexibility of modification and reuse
(cf [7]). In particular, by integrating our generaliza-
tion process with a plan modification framework such
as PrtiArt [8], we can store and reuse generalized plans
in a variety of new situations (including those in which
they are only partially applicable). This presents inter-
esting tradeoffs compared to a MACROP [5] based reuse
mechanism (for example, given the flexibility of reuse,

exact match retrieval may no longer be critical). Our
future plans include implementing the generalization al-
gorithms on top of PRIAR modificatien framework [6, 8,
9], and carrying out empirical experimentation to get a
clearer understanding of these tradeoffs.
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